Powerdynamo brings new ignition & light
to your vintage motorcycle

Company

Products

Technical Help

Search

   

Assembly instructions for system 71 06 999 00 (with advance control)

Version 09.04.2017

If you can install and time a stock ignition and possess basic mechanical skills, you can install a Powerdynamo!
If you never have worked on your ignition, better have it done by someone who knows.

Powerdynamo can not monitor the compliance to those instructions, nor the conditions and methods of installation, operation, usage and maintenance of the system. Improper installation may result in damage to property and possibly even bodily injury. Therefore we assume no responsibility for loss, damage or cost which result from, or are in any way related to, incorrect installation, improper operation, or incorrect use and maintenance. We reserve the right to make changes to the product, technical data or assembly and operating instructions without prior notice. 

 


IMPORTANT:

Please read these instructions fully and carefully before starting work on your motorcycle
Please bear in mind that any modification of the material as well as own repair attempts which have not been agreed with Powerdynamo may result in a loss of warranty. Do not cut off wires. This leads to a loss of reverse polarity protection and often results in damage to electronics. Also, please take note of the information provided on the information page for this system. Check that what you have bought really corresponds to the motorcycle you have. Wrong ignition settings may damage your engine and even hurt you during kickstart (violent kickbacks). Be careful during the first test runs. If needed change settings to safer values (less advance). During assembly check carefully that the rotor (flywheel) does not touch the stator coils or anything else, which may happen due to various circumstances and lead to severe damage.
Designated use
This system is designated to replace stock dynamo/alternator & ignition systems in vintage and classic motorcycles whose engine characteristics have not been modified aftermarket. This system is not a tuning system and it will not bring significant increases in engine output. It does however significantly enhance roadworthiness and comfort by offering better lighting, better function of side indicators and horn and, compared with the aging stock systems, increased reliability. As our system does not tamper with engine characteristics it does not increase emission of gaseous pollutants and noise. In most cases emission of pollutants should even be reduced due to better combustion. If used as designated the system therefore will not normally infringe the existing legal status of the motorcycle (this statement is valid for Germany, for other countries, please check locally against your road licensing regulations). This system is not suitable for use in competition events. If used other than the designated way, warranty will be voided and it might well be that you do not obtain the desired results or, worst you loose legal roadworthiness.

The charging system is only suitable for use with rechargable 12V (6V systems 6V) lead-acid batteries with  liquide electrolyte or sealed lead-acid batteries, AGM, Gel. It is not suitable for use with nickel-cadmium, nickel-metal-hydride, lithium-ion or any other types of recharchable or non rechargable batteries.

This is a replacement system and not a copy of the stock material. The parts in this system therefore look different and might fit differently (notably ignition coil and regulator) requiring some adaptation by you.

During assembly imperatively start with assy of engine based parts to see that those really fit before you start fitting the external parts. In many cases customers assemble those first and thereby often modify them in breach of warranty which renders them unfit for renewed sale. Replacing old ignition systems is not a matter of taking something from a supermarket shelf as there have been very many types, versions and possibly unknown aftermarket modifications which harbour plenty of room for error.
Our systems are NOT tested for use with third party electronic devices (such as GPS, mobile phones, LED lighting etc)and may cause damage to such parts. Possibly existing  electronic tachometers will not work with the new system. Read our information for suitable solutions. Possibly existing safety switches and electronic valve controls are not supported. It might be that your motorcycle was originally equipped with an ignition that did limit top speed for legal reasons. The new system does not have such a facility, so check your legal situation beforehand.
If you have no expertise for the installation have it done by an expert or at a specialist's workshop. Improper installation may damage the new system and your motorcycle, possibly even lead to bodily harm.
Before you order a system, please check whether a puller tool  for the new rotor is included in the kit. If not, better order it at the same time. You might want to order light bulbs, fuse, horn, flasher unit etc.
Never use anything other than  the recommended puller tool to pull the new rotor again. Damage to the rotor as a result of use of other  tools or methods is not covered by warranty.
The rotor is sensible to blows (including during transport). Before assembly, please always check for damage (on rotor without magnet plastification try to push the magnets aside with your fingers). After impact the glued in magnets might have broken loose, sticking to the rotor solely by magnetic force, so that one does not notice right away. During engine run the damage would be considerable. Before placing the rotor onto the engine, please make sure that its magnets have not collected any metal objects such as small screws, nuts and washers. That equally would lead to severe damage.

If you have access to the Internet, best view those instructions online. You get larger and better pictures by clicking onto them and possibly updated information. System list at http://www.powerdynamo.biz

You should have received those parts:

  • pre-assembled stator unit
  • rotor
  • electronic twin ignition coil
  • regulator/rectifier
  • advance unit
  • relay with cables
  • ht-cables
  • screws
To disengage your new rotor again, you will need a puller M27x1,25 (part-No.: 99 99 799 00 -Not provided!-).

Note: Never use a claw puller, a hammer or any other device, that will shake the magnets off.




Please note that the holder plate for the pickup module is only loosely fixed to the base plate with the 2 small countersunk screws M3, as you will have to take off the left screw and shift the plate a little to the side to gain access to a screw hole for assembly. As this small screw is volatile, be careful when tightening (we add 2 extra).

Further note that the sensor is only loosely fixed, as you will have to set it to correct gap.


Make sure your motorcycle rests securely, preferably on an elevated work bench and that you have good access to the dynamo side of the engine.

Disconnect your battery and take it out of the motorcycle. Note that you will install a 12 volts system, so you will either need a 12 volt battery or you use the option of driving without. You will still have to replace all light bulbs to 12 volt ones. The horn may stay at 6 volts. For driving without battery, please observe our information on driving without battery.




Disconnect all wires to the old dynamo, points. regulator and ignition coils and take those parts off.

The picture shows one type of original dynamo, you might have other arrangements.




Take the woodruff key from the crank pin. It will not be needed anymore and prevent assembly. If you forget this right at start, you will have to take the whole new unit off again to get access to the key.

No worry over this lost woodruff. Details see (online) here



Check whether there is still a small dowel
at the circumference of the dynamo seat. This is part of the old dynamo arrangement preventing the customer from installing the original unit wrong side up.

If the dowel is still there, it has to be removed (it can be pulled with a pair of pliers).

If the pin is left untreated, the new plate will not be sitting level to engine and that will cause the new rotor to touch the coils, leading to total destruction of the material.



The stator assembly consists of 2 consecutive layers of adapting plates and a lateral sensor holder plate

The bottom steel plate screws to the crank case and the top aluminium plate that centers and holds the stator coil screws to the steel plate, as does the sensor holder plate.

The position of the stator coil is not relevant, unless the black coil comes to sit directly under the pickup (this should be avoided).




Place the base onto the engine and fasten loosely with the bottom 2 countersunk screws.

Unscrew the left countersunk M3 of the sensor holder plate, shift is a little clockwise to gain access to the hole below and set the third base holder screw.

Tighten all 3 screws. Put the sensor holder back into position and tighten both M3 countersunk very carefully.




Take a look at the new rotor. On its circumference you will find 2 protrusions (noses). This will trigger the ignition impulse. 
The system calculates the ignition advance by using the time the nose needs to passing the sensor's core. So the ignition happens after the complete nose had passed-by the sensor.

 




Put the rotor on but do not tighten it yet. Than turn the rotor slowly by hand and check clearance between the sensor and one of the rotor noses. This has to be  ca. 0.4-0.5mm. 

You may adjust the gap by loosening the 2 holder screws of the sensor and shifting it a little.
Do not forget to tighten the 2 holder screws of the sensor carefully. If loose, the sensor will get into contact with the rotor and will be destroyed.



Check that the metal pin of the sensor runs about middle of the trigger sign on the rotor. The more it is outside, the harder starting is.

As it happens that shafts become shorter during engine repair, we place a 2mm shim for assembly under the sensor to push it up again to needed level. If sensor is too high, take the shim off.



It may happen that there is a problem with the dynamo cover - this may conflict a little with the sensor.
In most cases the solution will simply be to bend the 2 eye terminals of the white wires downwards (see picture which may be enlarged by clicking onto it).
In rare cases you may need to take a little material from the inside of the cover.


Take the spark plugs out, turn the rotor and bring one piston (any) into TDC (note: not ignition position as in the normal version, but into top dead center position).

In this position, take the rotor carefully off again without changing the crank's position and ... 

 



... reset it onto the crank in such a way that the left edge of the sensor core stands at the marking (as shown here left). 

In that position fasten the rotor carefully without changing the position of the rotor or the crank. If you've changed one of this positions, you have to redo the complete adjustment.

 




Tighten the rotor with the screw, not forgetting the supplied washer. To undo the rotor use a puller M27x1,25.

With that the work on the engine is finished. Put the spark plugs back.


Remains installation of the external parts. This will be different from motorcycle to motorcycle. There are however basic common points.

You will have to house:

  • the advance unit
  • new electronic twin ignition coil
  • the new regulator/rectifier unit
  • the switch off relay (will not be fitted if you drive without battery)

Before installing the advance unit, have a look at the small switches at the advance unit. They activate different characteristics. There are 4 switches activating different advance curves.
click graphs to enlarge them

Please note that you can not change setting during engine run, but only with engine at standstill.
all to off will activate the standard RD400E curve
on-off-off-off will activate curve 1
off-on-off-off will activate curve 2
on-on-off-off will activate curve 3
off-off-on-off will activate curve 4
on-off-on-off will activate curve 5

Now run the cables along the frame!
Lead the new wiring the frame upwards underneath the tank. At this spot the wiring splits. Lead the two black cables to the regulator/rectifier and the remaining wires to the advance unit and further to the ignition coil. Fasten the cables using the supplied cable binders.


click to enlarge
Integration of the new parts into the old system will vary from version to version (there had been quite a few stock wiring versions). But some points are always same here:
  • connect the red/white wire formerly running from main switch to stock ignition coils to the black on pin 85 of the PD relay
  • connect the red wire from the new regulator (plus 12v) to the red running from the fuse box formerly to the stock regulator
  • connect the brown wire from the new regulator (ground) to the black running from battery minus to formerly to the stock regulator
  • the 3 white to the stock regulator from the stock alternator can be removed or left insulated free
  • the wiring of the between the Powerdynamo parts is explained below

Connect the parts as shown in the respective wiring diagram!
use thewiring diagram 92xr_102:

*

To facilitate wire exit through the often small openings in the engine casing, the plastic plug of the generator's wiring that leads to the advance unit have not been put onto the wire terminal. You should place the plug there only once all has been properly installed on the engine side.
 

Look for the advance unit with its female plug and the three wires (red, yellow and white).

Put the provided 4-position plug housing onto this plug and insert the three wires (red, yellow and white) from the generator. Make sure that the terminals engage securely in the housing and that you connect:

  • red to red
  • yellow to yellow
  • white to white
 

Should you need (or want) to get the terminals out of the plug housing again, enter a paper clip from front next to the terminals and push the little barb aside. Than pull the wire out.

*

The second plug at the advance (a male plug) will be connected to the plug at the ignition coil. This two plugs can only be connected in one position. Note the changing colour:

  • red to red
  • white to white
  • blue/white of the advance unit to yellow of the ignition coil
*

Important! Never run the high tension cable(s) and the cable(s) of the advance unit closely in parallel (say in one shielding). This will trigger back coupling that disturbes ignition and might even damage the advance unit.

* Connecting Powerdynamo alternator to lighting circuit (via regulator):
  The 2 black wires running from the stator coil carry the voltage for lights, horn, flashers etc. They have nothing to do with ignition.

This voltage (something between 10 and 50 volts AC) has however to be rectified into direct current (DC) and stabilized (regulated) as it primarily is alternating current (AC) with voltage changing with engine speed.

  Attention: Any confusion between plus and minus or shorts between them leads to immediate destruction of the regulator. This will not constitute a warranty case as it is negligence! One can recognize a burnt regulator mostly by its sharp smell.
 

 

  • the 2 black (sw) wires are the AC input from the alternator (as it is AC it does not matter which black to which black)
  • the red (rt) wire is the 12V DC output plus
  • the brown (br) wire is gound, internally connected to housing (But do not rely on frame contact, use the wire)
*

Remains the blue (sometimes blue/white) wire at the ignition coil. This is the kill (cut-off) wire.

Connected to ground - it will stop ignition!

Note:
Should you experience ignition failures, disconnect as a first measure this blue wire. In  many cases that will permit you to get mobile again (particulars see: technical help)!

Switch off via separate kill switch
(when driving without battery):
The relay will not be fitted. The blue(/white) cable of the ignition coil will be connected to a kill switch, closing against ground (a button at the handlebars). Or you mount an ignition lock that has a facility to connect against ground when in OFF position.

Battery method:
Connect the brown relay wire to good ground. Lead the longer black wire from the relay to the wire that did run previously to a pin carrying voltage when the switch is on (in German bikes: pin 15) and connect it there. 
Connect the blue wire from pin 30 of the relay to the blue(/white) wire at the new ignition coil.
should your battery fail on the road, just disconnect that blue wire and your bike will run again (it will now only not stop by switching off).

 
Relay wiring
(if used):

The brown wire with the ring terminal from pins 87a und 86 goes to ground.

The black wire from pin 85 goes to a main switch terminal carrying voltage if switched on.

* Screw the high tension (ignition) cables ...

Please do not use any spark amplifying cables, such as "Nology supercables" or "hot wire". This will disturb the system and possibly damage it.

... into the ignition coil and pull over the rubber seals before mounting the coil (it will be easier).

Please do use the cable arriving with the pack and not any old cable.

  You will do yourself a favour to treat your bike to new spark plugs and spark plug sockets (preferably some between 0-2kOhm). Plenty of problems are to be traced back to "apparently good" (even completely "brand-new") sparks plugs, terminals and cables.
Do not use spark plugs with an intern suppression resistor. NGK (e.g.) offered such spark plugs coded with an "R" (for resistor).
*

 

 
 

In our twin outlet coils both ends of the secondary go to the spark plugs.

Typical resistance between both exits is 6.2kOhm. Both exists fire at the same time (as many twin systems do). Sparks will be polarised however at a 180 degrees difference which might manifest when you strobe it.

  Ignition will only work correctly if both plug terminals are connected. You may not test one side with the other open (not sitting on the mounted spark plug). This is because (effectively) each exit uses ground from the other. That means also that both plugs are working in serial, adding resistances, so better use low resistance spark plug (resistor) sockets and make sure they are good. If in doubt, measure resistance on a hot socket (warm it up before measuring).

Is the flow from ground of one side via spark plug there, via coil, to the other spark plug and its ground interrupted you get no spark - on neither side. If you really want to test only one side, put the HT wire of the other to ground (earth it) than it will work. Sometimes a coil deprived of its ground from the other side searches for a substitute - with some solid fireworks around it to the chassis.

*

Finally - and before installing the battery and before the first kickstart - please re-check carefully all connections and fitments against the wiring diagram. Do check battery and light bulbs for correct voltage (12V).

Should something not work, please consult our trouble-shooting guide on our homepage. As a first step disconnect the blue wire from the coil and re-test.

* IMPORTANT: During crank shaft repair the dynamo shaft is often machined and gets shorter. The result is a rotor sitting lower, possibly touching now with its rivets the stator coil. The result is a destroyed stator and ignition failure.
For more detail and how to check see (online) here.

 

Important safety and operating information

#

Safety first! Please observe the general health and safety regulations motor vehicle repair (MVR) as well as the safety information and obligations indicated by the manufacturer of your motorcycle.
The timing marks on the material are for general guidance only during first installation. Please check after assembly by suitable means (stroboscope) that settings are correct to prevent damage to the engine or possibly even your health. You alone are responsible for the installation and the correctness of settings.

#

Ignition systems generate high tension! With our material right up to 40,000 Volts! This may, if handled carelessly, not only be painful, but outrightly dangerous. Please do keep a safe distance to the electrode of your spark plug and open high tension cables. Should you need to test spark firing, hold the spark plug socket securely with some well insulating material and push it firmly to solid ground of the engine block.
Never pull sparkplug caps when engine is running. Wash your vehicle only with engine at standstill and ignition off.

#

Should you have received in the kit HT cables with a fixed rubber boot(which does not contain a resistor) you might have to use spark plugs with an inbuilt resistor (or replace the cap with one containing a resistor) to comply with your local laws.

#

After installation, please check tightness of all screws, even those preinstalled. If parts get loose during run, there will be inevitably damage to the material. We pre-assemble screws only loosely.

#

Give the newly installed system a chance to work, before you start to check and test values, or what is worse apply changes to it.
Our parts have been checked before delivery to you. You will not be able to check much anyway. At any rate do refrain from measuring the electronic components (such as ignition coil, regulator and advance unit). You risk severe damage to the inner electronics there. You will not get any tangible results from the operation anyway. Bear in mind that also your carburetor, your spark plugs and spark plug sockets (even if completely new) might be the reason for malfunction. The general experience with our systems is that the carburetor will have to be re-adjusted to lower settings. Should the system not start after assembly, first disconnect the blue (or blue/white) cut-off wire directly at the ignition coil (or in some cases advance unit) to eliminate any malfunction in the cut-off circuitry. Check ground connections carefully, make sure there is a good electrical connection between frame and engine block.
In case of troubles, please consult our Knowledge Base first before you send off the material to us for checking

#

The spark of classic, points based ignition systems has with about 10,000 Volts comparatively little energy and looks therefore yellow and fat (which however makes it highly visible). The spark from our system is a high energy spark with up to 40,000 Volts and therefore is needle thin focused in form, and blue in colour, which makes it not so visible. Furthermore you get spark only at kick-start operated speeds and not by pushing the kick-lever down slowly with your hand (as you might get with battery based ignitions).

#

Systems using a twin outlet ignition coils have a few peculiarities. Please observe that during tests on one side, the other has either to be connected to an fitted spark plug or securely earthed/grounded. Otherwise there will be no spark on either side. Also with such open exits long and dangerous sparks may fly all over the coil.

#

Never do electric arc welding on the bike without completely disconnecting all parts containing semiconductors (ignition coil, regulator, advance) stator and rotor need not be taken off. The same is true for soldering. Before touching electronics disconnect the soldering iron from mains! Never use copper putty on spark plugs.

#

Electronics are very sensitive to wrong polarity. After work on the system, do check correct polarity of the battery and the regulator. Wrong polarity creates short circuits and will destroy the regulator, the ignition coil and the advance unit. As a rule, wiring will always be colour to colour. Instances, where colour jumps between wires are expressly mentioned in our instructions.

#

When you handle the new rotor, take care not to damage its magnets. Refrain from direct blows to the circumference of the rotor. When transporting never put the rotor over the stator. Observe our information relative to transport of the material.

#

Do not use spark plug sockets with a resistance of more than 5kOhm. Better use 1 or 2kOhm ones. Bear in mind that spark plug sockets do age and thereby increase their internal resistance. Should an engine start up only when cold, a defective spark plug socket and/or spark plug is very probably the cause. In case of problems check high tension cables too. Never use carbon fibre HT-cables, never use so called "hot wires" which promise to increase spark.

#

It is a good idea to cover the rotor in a thin layer of oil to reduce the risk of corrosion.

#

Never use a claw puller or a hammer to disengage the rotor. Its magnets might become loose in the event. We offer a special puller for disengaging the new rotor again (see assembly instruction)!

#

Should the motorcycle not be in use for some longer period, please disconnect the battery (so existing) to prevent current bleeding through the diodes of the regulator. Though, even a disconnected battery will empty itself after a while.

#

Please do observe these remarks, but at the same time, don't be afraid of the installation process. Remember, that before you, thousands of other customers have successfully installed the system.
Enjoy driving your bike with its new electric heart!